Integraal van $$$11 \sqrt{2} \sqrt{x}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int 11 \sqrt{2} \sqrt{x}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=11 \sqrt{2}$$$ en $$$f{\left(x \right)} = \sqrt{x}$$$:
$${\color{red}{\int{11 \sqrt{2} \sqrt{x} d x}}} = {\color{red}{\left(11 \sqrt{2} \int{\sqrt{x} d x}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=\frac{1}{2}$$$:
$$11 \sqrt{2} {\color{red}{\int{\sqrt{x} d x}}}=11 \sqrt{2} {\color{red}{\int{x^{\frac{1}{2}} d x}}}=11 \sqrt{2} {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=11 \sqrt{2} {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}$$
Dus,
$$\int{11 \sqrt{2} \sqrt{x} d x} = \frac{22 \sqrt{2} x^{\frac{3}{2}}}{3}$$
Voeg de integratieconstante toe:
$$\int{11 \sqrt{2} \sqrt{x} d x} = \frac{22 \sqrt{2} x^{\frac{3}{2}}}{3}+C$$
Antwoord
$$$\int 11 \sqrt{2} \sqrt{x}\, dx = \frac{22 \sqrt{2} x^{\frac{3}{2}}}{3} + C$$$A