Integraal van $$$\frac{1}{\ln\left(n^{3}\right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{3 \ln\left(n\right)}\, dn$$$.
Oplossing
De invoer is herschreven: $$$\int{\frac{1}{\ln{\left(n^{3} \right)}} d n}=\int{\frac{1}{3 \ln{\left(n \right)}} d n}$$$.
Pas de constante-veelvoudregel $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ toe met $$$c=\frac{1}{3}$$$ en $$$f{\left(n \right)} = \frac{1}{\ln{\left(n \right)}}$$$:
$${\color{red}{\int{\frac{1}{3 \ln{\left(n \right)}} d n}}} = {\color{red}{\left(\frac{\int{\frac{1}{\ln{\left(n \right)}} d n}}{3}\right)}}$$
Deze integraal (Logaritmische integraal) heeft geen gesloten vorm:
$$\frac{{\color{red}{\int{\frac{1}{\ln{\left(n \right)}} d n}}}}{3} = \frac{{\color{red}{\operatorname{li}{\left(n \right)}}}}{3}$$
Dus,
$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{3 \ln{\left(n \right)}} d n} = \frac{\operatorname{li}{\left(n \right)}}{3}+C$$
Antwoord
$$$\int \frac{1}{3 \ln\left(n\right)}\, dn = \frac{\operatorname{li}{\left(n \right)}}{3} + C$$$A