Integraal van $$$\frac{1}{2 x^{6} y^{6}}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{2 x^{6} y^{6}}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2 y^{6}}$$$ en $$$f{\left(x \right)} = \frac{1}{x^{6}}$$$:
$${\color{red}{\int{\frac{1}{2 x^{6} y^{6}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{6}} d x}}{2 y^{6}}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-6$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{6}} d x}}}}{2 y^{6}}=\frac{{\color{red}{\int{x^{-6} d x}}}}{2 y^{6}}=\frac{{\color{red}{\frac{x^{-6 + 1}}{-6 + 1}}}}{2 y^{6}}=\frac{{\color{red}{\left(- \frac{x^{-5}}{5}\right)}}}{2 y^{6}}=\frac{{\color{red}{\left(- \frac{1}{5 x^{5}}\right)}}}{2 y^{6}}$$
Dus,
$$\int{\frac{1}{2 x^{6} y^{6}} d x} = - \frac{1}{10 x^{5} y^{6}}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{2 x^{6} y^{6}} d x} = - \frac{1}{10 x^{5} y^{6}}+C$$
Antwoord
$$$\int \frac{1}{2 x^{6} y^{6}}\, dx = - \frac{1}{10 x^{5} y^{6}} + C$$$A