Integraal van $$$\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}$$$ met betrekking tot $$$x$$$

De rekenmachine zal de integraal/primitieve van $$$\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}$$$ met betrekking tot $$$x$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx$$$.

Oplossing

Vermenigvuldig de teller en de noemer met $$$\sec^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}}$$

Zij $$$u=\tan{\left(x \right)}$$$.

Dan $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sec^{2}{\left(x \right)} dx = du$$$.

Dus,

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}}$$

Zij $$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$.

Dan $$$dv=\left(\frac{u \left|{b}\right|}{\left|{a}\right|}\right)^{\prime }du = \frac{\left|{b}\right|}{\left|{a}\right|} du$$$ (de stappen zijn te zien »), en dan geldt dat $$$du = \frac{\left|{a}\right| dv}{\left|{b}\right|}$$$.

De integraal kan worden herschreven als

$${\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=\frac{\left|{a}\right|}{a^{2} \left|{b}\right|}$$$ en $$$f{\left(v \right)} = \frac{1}{v^{2} + 1}$$$:

$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{v^{2} + 1} d v}}{a^{2} \left|{b}\right|}}}$$

De integraal van $$$\frac{1}{v^{2} + 1}$$$ is $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(v \right)}}}}{a^{2} \left|{b}\right|}$$

We herinneren eraan dat $$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$:

$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{v}} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{u \left|{b}\right|}{\left|{a}\right|}}} \right)}}{a^{2} \left|{b}\right|}$$

We herinneren eraan dat $$$u=\tan{\left(x \right)}$$$:

$$\frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{u}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{\tan{\left(x \right)}}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$

Dus,

$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\tan{\left(x \right)} \left|{b}\right|}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$

Vereenvoudig:

$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}+C$$

Antwoord

$$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}} + C$$$A


Please try a new game Rotatly