Integraal van $$$- 10 \sin{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(- 10 \sin{\left(x \right)}\right)\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=-10$$$ en $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\left(- 10 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(- 10 \int{\sin{\left(x \right)} d x}\right)}}$$
De integraal van de sinus is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- 10 {\color{red}{\int{\sin{\left(x \right)} d x}}} = - 10 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Dus,
$$\int{\left(- 10 \sin{\left(x \right)}\right)d x} = 10 \cos{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\left(- 10 \sin{\left(x \right)}\right)d x} = 10 \cos{\left(x \right)}+C$$
Antwoord
$$$\int \left(- 10 \sin{\left(x \right)}\right)\, dx = 10 \cos{\left(x \right)} + C$$$A