Integraal van $$$\sin{\left(\sqrt{x} \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sin{\left(\sqrt{x} \right)}\, dx$$$.
Oplossing
Zij $$$u=\sqrt{x}$$$.
Dan $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Dus,
$${\color{red}{\int{\sin{\left(\sqrt{x} \right)} d x}}} = {\color{red}{\int{2 u \sin{\left(u \right)} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = u \sin{\left(u \right)}$$$:
$${\color{red}{\int{2 u \sin{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{u \sin{\left(u \right)} d u}\right)}}$$
Voor de integraal $$$\int{u \sin{\left(u \right)} d u}$$$, gebruik partiële integratie $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Zij $$$\operatorname{\kappa}=u$$$ en $$$\operatorname{dv}=\sin{\left(u \right)} du$$$.
Dan $$$\operatorname{d\kappa}=\left(u\right)^{\prime }du=1 du$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{\sin{\left(u \right)} d u}=- \cos{\left(u \right)}$$$ (de stappen zijn te zien »).
De integraal kan worden herschreven als
$$2 {\color{red}{\int{u \sin{\left(u \right)} d u}}}=2 {\color{red}{\left(u \cdot \left(- \cos{\left(u \right)}\right)-\int{\left(- \cos{\left(u \right)}\right) \cdot 1 d u}\right)}}=2 {\color{red}{\left(- u \cos{\left(u \right)} - \int{\left(- \cos{\left(u \right)}\right)d u}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- 2 u \cos{\left(u \right)} - 2 {\color{red}{\int{\left(- \cos{\left(u \right)}\right)d u}}} = - 2 u \cos{\left(u \right)} - 2 {\color{red}{\left(- \int{\cos{\left(u \right)} d u}\right)}}$$
De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- 2 u \cos{\left(u \right)} + 2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = - 2 u \cos{\left(u \right)} + 2 {\color{red}{\sin{\left(u \right)}}}$$
We herinneren eraan dat $$$u=\sqrt{x}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} - 2 {\color{red}{u}} \cos{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\sqrt{x}}} \right)} - 2 {\color{red}{\sqrt{x}}} \cos{\left({\color{red}{\sqrt{x}}} \right)}$$
Dus,
$$\int{\sin{\left(\sqrt{x} \right)} d x} = - 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}$$
Voeg de integratieconstante toe:
$$\int{\sin{\left(\sqrt{x} \right)} d x} = - 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}+C$$
Antwoord
$$$\int \sin{\left(\sqrt{x} \right)}\, dx = \left(- 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}\right) + C$$$A