Integraal van $$$y \sin{\left(y^{2} \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int y \sin{\left(y^{2} \right)}\, dy$$$.
Oplossing
Zij $$$u=y^{2}$$$.
Dan $$$du=\left(y^{2}\right)^{\prime }dy = 2 y dy$$$ (de stappen zijn te zien »), en dan geldt dat $$$y dy = \frac{du}{2}$$$.
Dus,
$${\color{red}{\int{y \sin{\left(y^{2} \right)} d y}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
We herinneren eraan dat $$$u=y^{2}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{y^{2}}} \right)}}{2}$$
Dus,
$$\int{y \sin{\left(y^{2} \right)} d y} = - \frac{\cos{\left(y^{2} \right)}}{2}$$
Voeg de integratieconstante toe:
$$\int{y \sin{\left(y^{2} \right)} d y} = - \frac{\cos{\left(y^{2} \right)}}{2}+C$$
Antwoord
$$$\int y \sin{\left(y^{2} \right)}\, dy = - \frac{\cos{\left(y^{2} \right)}}{2} + C$$$A