Integraal van $$$\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}\, dx$$$.

Oplossing

De invoer is herschreven: $$$\int{\frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}} d x}=\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x}$$$.

Vereenvoudig de integraand:

$${\color{red}{\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x}}} = {\color{red}{\int{\frac{\sqrt{2}}{2 \sqrt{1 - 3 x^{2}}} d x}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{\sqrt{2}}{2}$$$ en $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - 3 x^{2}}}$$$:

$${\color{red}{\int{\frac{\sqrt{2}}{2 \sqrt{1 - 3 x^{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{\sqrt{1 - 3 x^{2}}} d x}}{2}\right)}}$$

Zij $$$x=\frac{\sqrt{3} \sin{\left(u \right)}}{3}$$$.

Dan $$$dx=\left(\frac{\sqrt{3} \sin{\left(u \right)}}{3}\right)^{\prime }du = \frac{\sqrt{3} \cos{\left(u \right)}}{3} du$$$ (zie » voor de stappen).

Bovendien volgt dat $$$u=\operatorname{asin}{\left(\sqrt{3} x \right)}$$$.

Dus,

$$$\frac{1}{\sqrt{1 - 3 x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}$$$

Gebruik de identiteit $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}}$$$

Aangenomen dat $$$\cos{\left( u \right)} \ge 0$$$, verkrijgen we het volgende:

$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{\cos{\left( u \right)}}$$$

Dus,

$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{\sqrt{1 - 3 x^{2}}} d x}}}}{2} = \frac{\sqrt{2} {\color{red}{\int{\frac{\sqrt{3}}{3} d u}}}}{2}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=\frac{\sqrt{3}}{3}$$$:

$$\frac{\sqrt{2} {\color{red}{\int{\frac{\sqrt{3}}{3} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{3} u}{3}\right)}}}{2}$$

We herinneren eraan dat $$$u=\operatorname{asin}{\left(\sqrt{3} x \right)}$$$:

$$\frac{\sqrt{6} {\color{red}{u}}}{6} = \frac{\sqrt{6} {\color{red}{\operatorname{asin}{\left(\sqrt{3} x \right)}}}}{6}$$

Dus,

$$\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x} = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{\sqrt{2 - 6 x^{2}}} d x} = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6}+C$$

Antwoord

$$$\int \frac{x}{\sqrt{- 6 x^{4} + 2 x^{2}}}\, dx = \frac{\sqrt{6} \operatorname{asin}{\left(\sqrt{3} x \right)}}{6} + C$$$A


Please try a new game Rotatly