Integraal van $$$x^{2} - 38 \sin{\left(x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$x^{2} - 38 \sin{\left(x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{38 \sin{\left(x \right)} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=38$$$ en $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$\frac{x^{3}}{3} - {\color{red}{\int{38 \sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(38 \int{\sin{\left(x \right)} d x}\right)}}$$

De integraal van de sinus is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{x^{3}}{3} - 38 {\color{red}{\int{\sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - 38 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Dus,

$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}$$

Voeg de integratieconstante toe:

$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}+C$$

Antwoord

$$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx = \left(\frac{x^{3}}{3} + 38 \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly