Integraal van $$$x^{2} \left(4 - x^{2}\right)$$$

De calculator zal de integraal/primitieve functie van $$$x^{2} \left(4 - x^{2}\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int x^{2} \left(4 - x^{2}\right)\, dx$$$.

Oplossing

Expand the expression:

$${\color{red}{\int{x^{2} \left(4 - x^{2}\right) d x}}} = {\color{red}{\int{\left(- x^{4} + 4 x^{2}\right)d x}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(- x^{4} + 4 x^{2}\right)d x}}} = {\color{red}{\left(\int{4 x^{2} d x} - \int{x^{4} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=4$$$:

$$\int{4 x^{2} d x} - {\color{red}{\int{x^{4} d x}}}=\int{4 x^{2} d x} - {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=\int{4 x^{2} d x} - {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4$$$ en $$$f{\left(x \right)} = x^{2}$$$:

$$- \frac{x^{5}}{5} + {\color{red}{\int{4 x^{2} d x}}} = - \frac{x^{5}}{5} + {\color{red}{\left(4 \int{x^{2} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$- \frac{x^{5}}{5} + 4 {\color{red}{\int{x^{2} d x}}}=- \frac{x^{5}}{5} + 4 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \frac{x^{5}}{5} + 4 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Dus,

$$\int{x^{2} \left(4 - x^{2}\right) d x} = - \frac{x^{5}}{5} + \frac{4 x^{3}}{3}$$

Vereenvoudig:

$$\int{x^{2} \left(4 - x^{2}\right) d x} = \frac{x^{3} \left(20 - 3 x^{2}\right)}{15}$$

Voeg de integratieconstante toe:

$$\int{x^{2} \left(4 - x^{2}\right) d x} = \frac{x^{3} \left(20 - 3 x^{2}\right)}{15}+C$$

Antwoord

$$$\int x^{2} \left(4 - x^{2}\right)\, dx = \frac{x^{3} \left(20 - 3 x^{2}\right)}{15} + C$$$A


Please try a new game Rotatly