Integraal van $$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$.
Oplossing
Herschrijf de integraand:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
Zij $$$u=\sec{\left(x \right)}$$$.
Dan $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.
Dus,
$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$
Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
We herinneren eraan dat $$$u=\sec{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$
Dus,
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$
Antwoord
$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A