Integraal van $$$\frac{\sqrt{21} \sqrt{x^{3}}}{21}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{\sqrt{21} \sqrt{x^{3}}}{21}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\sqrt{21} \sqrt{x^{3}}}{21}\, dx$$$.

Oplossing

De invoer is herschreven: $$$\int{\frac{\sqrt{21} \sqrt{x^{3}}}{21} d x}=\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x}$$$.

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{\sqrt{21}}{21}$$$ en $$$f{\left(x \right)} = x^{\frac{3}{2}}$$$:

$${\color{red}{\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x}}} = {\color{red}{\left(\frac{\sqrt{21} \int{x^{\frac{3}{2}} d x}}{21}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=\frac{3}{2}$$$:

$$\frac{\sqrt{21} {\color{red}{\int{x^{\frac{3}{2}} d x}}}}{21}=\frac{\sqrt{21} {\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}}{21}=\frac{\sqrt{21} {\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}}{21}$$

Dus,

$$\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x} = \frac{2 \sqrt{21} x^{\frac{5}{2}}}{105}$$

Voeg de integratieconstante toe:

$$\int{\frac{\sqrt{21} x^{\frac{3}{2}}}{21} d x} = \frac{2 \sqrt{21} x^{\frac{5}{2}}}{105}+C$$

Antwoord

$$$\int \frac{\sqrt{21} \sqrt{x^{3}}}{21}\, dx = \frac{2 \sqrt{21} x^{\frac{5}{2}}}{105} + C$$$A


Please try a new game Rotatly