Integraal van $$$4 t \sin{\left(c^{2} \right)}$$$ met betrekking tot $$$t$$$

De rekenmachine zal de integraal/primitieve van $$$4 t \sin{\left(c^{2} \right)}$$$ met betrekking tot $$$t$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int 4 t \sin{\left(c^{2} \right)}\, dt$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=4 \sin{\left(c^{2} \right)}$$$ en $$$f{\left(t \right)} = t$$$:

$${\color{red}{\int{4 t \sin{\left(c^{2} \right)} d t}}} = {\color{red}{\left(4 \sin{\left(c^{2} \right)} \int{t d t}\right)}}$$

Pas de machtsregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$4 \sin{\left(c^{2} \right)} {\color{red}{\int{t d t}}}=4 \sin{\left(c^{2} \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=4 \sin{\left(c^{2} \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Dus,

$$\int{4 t \sin{\left(c^{2} \right)} d t} = 2 t^{2} \sin{\left(c^{2} \right)}$$

Voeg de integratieconstante toe:

$$\int{4 t \sin{\left(c^{2} \right)} d t} = 2 t^{2} \sin{\left(c^{2} \right)}+C$$

Antwoord

$$$\int 4 t \sin{\left(c^{2} \right)}\, dt = 2 t^{2} \sin{\left(c^{2} \right)} + C$$$A


Please try a new game Rotatly