Integraal van $$$\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Oplossing
Herschrijf de integraand:
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{2 \cos{\left(x \right)} d x}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{2 \cos{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(x \right)} d x}\right)}}$$
De integraal van de cosinus is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(x \right)} d x}}} = 2 {\color{red}{\sin{\left(x \right)}}}$$
Dus,
$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = 2 \sin{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = 2 \sin{\left(x \right)}+C$$
Antwoord
$$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx = 2 \sin{\left(x \right)} + C$$$A