Integraal van $$$\sin{\left(\theta \right)} \cos{\left(\theta \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sin{\left(\theta \right)} \cos{\left(\theta \right)}\, d\theta$$$.
Oplossing
Zij $$$u=\sin{\left(\theta \right)}$$$.
Dan $$$du=\left(\sin{\left(\theta \right)}\right)^{\prime }d\theta = \cos{\left(\theta \right)} d\theta$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(\theta \right)} d\theta = du$$$.
Dus,
$${\color{red}{\int{\sin{\left(\theta \right)} \cos{\left(\theta \right)} d \theta}}} = {\color{red}{\int{u d u}}}$$
Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:
$${\color{red}{\int{u d u}}}={\color{red}{\frac{u^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
We herinneren eraan dat $$$u=\sin{\left(\theta \right)}$$$:
$$\frac{{\color{red}{u}}^{2}}{2} = \frac{{\color{red}{\sin{\left(\theta \right)}}}^{2}}{2}$$
Dus,
$$\int{\sin{\left(\theta \right)} \cos{\left(\theta \right)} d \theta} = \frac{\sin^{2}{\left(\theta \right)}}{2}$$
Voeg de integratieconstante toe:
$$\int{\sin{\left(\theta \right)} \cos{\left(\theta \right)} d \theta} = \frac{\sin^{2}{\left(\theta \right)}}{2}+C$$
Antwoord
$$$\int \sin{\left(\theta \right)} \cos{\left(\theta \right)}\, d\theta = \frac{\sin^{2}{\left(\theta \right)}}{2} + C$$$A