Integraal van $$$\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}\, dx$$$.

Oplossing

Zij $$$u=44 x$$$.

Dan $$$du=\left(44 x\right)^{\prime }dx = 44 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{44}$$$.

Dus,

$${\color{red}{\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}}{44} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{44}$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}}{44} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)} d u}}{44}\right)}}$$

Zij $$$v=\cos{\left(u \right)}$$$.

Dan $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sin{\left(u \right)} du = - dv$$$.

De integraal kan worden herschreven als

$$\frac{{\color{red}{\int{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)} d u}}}}{44} = \frac{{\color{red}{\int{\left(- \sin{\left(v \right)}\right)d v}}}}{44}$$

Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=-1$$$ en $$$f{\left(v \right)} = \sin{\left(v \right)}$$$:

$$\frac{{\color{red}{\int{\left(- \sin{\left(v \right)}\right)d v}}}}{44} = \frac{{\color{red}{\left(- \int{\sin{\left(v \right)} d v}\right)}}}{44}$$

De integraal van de sinus is $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:

$$- \frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{44} = - \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{44}$$

We herinneren eraan dat $$$v=\cos{\left(u \right)}$$$:

$$\frac{\cos{\left({\color{red}{v}} \right)}}{44} = \frac{\cos{\left({\color{red}{\cos{\left(u \right)}}} \right)}}{44}$$

We herinneren eraan dat $$$u=44 x$$$:

$$\frac{\cos{\left(\cos{\left({\color{red}{u}} \right)} \right)}}{44} = \frac{\cos{\left(\cos{\left({\color{red}{\left(44 x\right)}} \right)} \right)}}{44}$$

Dus,

$$\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x} = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44}$$

Voeg de integratieconstante toe:

$$\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x} = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44}+C$$

Antwoord

$$$\int \sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}\, dx = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44} + C$$$A


Please try a new game Rotatly