Integraal van $$$\tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \tan{\left(\theta \right)} \sec{\left(\theta \right)}\, d\theta$$$.
Oplossing
De integraal van $$$\tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$ is $$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}$$$:
$${\color{red}{\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}}} = {\color{red}{\sec{\left(\theta \right)}}}$$
Dus,
$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}$$
Voeg de integratieconstante toe:
$$\int{\tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta} = \sec{\left(\theta \right)}+C$$
Antwoord
$$$\int \tan{\left(\theta \right)} \sec{\left(\theta \right)}\, d\theta = \sec{\left(\theta \right)} + C$$$A