Integraal van $$$\pi^{x}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \pi^{x}\, dx$$$.
Oplossing
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\pi$$$:
$${\color{red}{\int{\pi^{x} d x}}} = {\color{red}{\frac{\pi^{x}}{\ln{\left(\pi \right)}}}}$$
Dus,
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}$$
Voeg de integratieconstante toe:
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}+C$$
Antwoord
$$$\int \pi^{x}\, dx = \frac{\pi^{x}}{\ln\left(\pi\right)} + C$$$A
Please try a new game Rotatly