Integraal van $$$x^{- a} \ln\left(n\right)$$$ met betrekking tot $$$x$$$

De rekenmachine zal de integraal/primitieve van $$$x^{- a} \ln\left(n\right)$$$ met betrekking tot $$$x$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int x^{- a} \ln\left(n\right)\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\ln{\left(n \right)}$$$ en $$$f{\left(x \right)} = x^{- a}$$$:

$${\color{red}{\int{x^{- a} \ln{\left(n \right)} d x}}} = {\color{red}{\ln{\left(n \right)} \int{x^{- a} d x}}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=- a$$$:

$$\ln{\left(n \right)} {\color{red}{\int{x^{- a} d x}}}=\ln{\left(n \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}=\ln{\left(n \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}$$

Dus,

$$\int{x^{- a} \ln{\left(n \right)} d x} = \frac{x^{1 - a} \ln{\left(n \right)}}{1 - a}$$

Vereenvoudig:

$$\int{x^{- a} \ln{\left(n \right)} d x} = - \frac{x^{1 - a} \ln{\left(n \right)}}{a - 1}$$

Voeg de integratieconstante toe:

$$\int{x^{- a} \ln{\left(n \right)} d x} = - \frac{x^{1 - a} \ln{\left(n \right)}}{a - 1}+C$$

Antwoord

$$$\int x^{- a} \ln\left(n\right)\, dx = - \frac{x^{1 - a} \ln\left(n\right)}{a - 1} + C$$$A


Please try a new game Rotatly