Integraal van $$$\ln\left(\frac{x}{2} - 1\right)$$$

De calculator zal de integraal/primitieve functie van $$$\ln\left(\frac{x}{2} - 1\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \ln\left(\frac{x}{2} - 1\right)\, dx$$$.

Oplossing

Zij $$$u=\frac{x}{2} - 1$$$.

Dan $$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = 2 du$$$.

Dus,

$${\color{red}{\int{\ln{\left(\frac{x}{2} - 1 \right)} d x}}} = {\color{red}{\int{2 \ln{\left(u \right)} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:

$${\color{red}{\int{2 \ln{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\ln{\left(u \right)} d u}\right)}}$$

Voor de integraal $$$\int{\ln{\left(u \right)} d u}$$$, gebruik partiële integratie $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.

Zij $$$\operatorname{g}=\ln{\left(u \right)}$$$ en $$$\operatorname{dv}=du$$$.

Dan $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d u}=u$$$ (de stappen zijn te zien »).

Dus,

$$2 {\color{red}{\int{\ln{\left(u \right)} d u}}}=2 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=2 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$2 u \ln{\left(u \right)} - 2 {\color{red}{\int{1 d u}}} = 2 u \ln{\left(u \right)} - 2 {\color{red}{u}}$$

We herinneren eraan dat $$$u=\frac{x}{2} - 1$$$:

$$- 2 {\color{red}{u}} + 2 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} + 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} \ln{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$

Dus,

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + 2 \left(\frac{x}{2} - 1\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$

Vereenvoudig:

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$

Voeg de constante van integratie toe (en verwijder de constante uit de uitdrukking):

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)}+C$$

Antwoord

$$$\int \ln\left(\frac{x}{2} - 1\right)\, dx = \left(- x + \left(x - 2\right) \ln\left(\frac{x}{2} - 1\right)\right) + C$$$A


Please try a new game Rotatly