Integraal van $$$\frac{e_{1}}{t}$$$ met betrekking tot $$$t$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{e_{1}}{t}\, dt$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=e_{1}$$$ en $$$f{\left(t \right)} = \frac{1}{t}$$$:
$${\color{red}{\int{\frac{e_{1}}{t} d t}}} = {\color{red}{e_{1} \int{\frac{1}{t} d t}}}$$
De integraal van $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$e_{1} {\color{red}{\int{\frac{1}{t} d t}}} = e_{1} {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
Dus,
$$\int{\frac{e_{1}}{t} d t} = e_{1} \ln{\left(\left|{t}\right| \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{e_{1}}{t} d t} = e_{1} \ln{\left(\left|{t}\right| \right)}+C$$
Antwoord
$$$\int \frac{e_{1}}{t}\, dt = e_{1} \ln\left(\left|{t}\right|\right) + C$$$A