Integraal van $$$e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$.
Oplossing
Zij $$$u=\sin{\left(x \right)}$$$.
Dan $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(x \right)} dx = du$$$.
De integraal kan worden herschreven als
$${\color{red}{\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
De integraal van de exponentiële functie is $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
We herinneren eraan dat $$$u=\sin{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\sin{\left(x \right)}}}}$$
Dus,
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}$$
Voeg de integratieconstante toe:
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}+C$$
Antwoord
$$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = e^{\sin{\left(x \right)}} + C$$$A