Integraal van $$$e^{x} \ln\left(x\right)$$$

De calculator zal de integraal/primitieve functie van $$$e^{x} \ln\left(x\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int e^{x} \ln\left(x\right)\, dx$$$.

Oplossing

Voor de integraal $$$\int{e^{x} \ln{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\ln{\left(x \right)}$$$ en $$$\operatorname{dv}=e^{x} dx$$$.

Dan $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (de stappen zijn te zien »).

De integraal kan worden herschreven als

$${\color{red}{\int{e^{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(e^{x} \ln{\left(x \right)} - \int{\frac{e^{x}}{x} d x}\right)}}$$

Deze integraal (Exponentiële integraal) heeft geen gesloten vorm:

$$e^{x} \ln{\left(x \right)} - {\color{red}{\int{\frac{e^{x}}{x} d x}}} = e^{x} \ln{\left(x \right)} - {\color{red}{\operatorname{Ei}{\left(x \right)}}}$$

Dus,

$$\int{e^{x} \ln{\left(x \right)} d x} = e^{x} \ln{\left(x \right)} - \operatorname{Ei}{\left(x \right)}$$

Voeg de integratieconstante toe:

$$\int{e^{x} \ln{\left(x \right)} d x} = e^{x} \ln{\left(x \right)} - \operatorname{Ei}{\left(x \right)}+C$$

Antwoord

$$$\int e^{x} \ln\left(x\right)\, dx = \left(e^{x} \ln\left(x\right) - \operatorname{Ei}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly