Integraal van $$$\frac{x - 9}{x}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{x - 9}{x}\, dx$$$.
Oplossing
Expand the expression:
$${\color{red}{\int{\frac{x - 9}{x} d x}}} = {\color{red}{\int{\left(1 - \frac{9}{x}\right)d x}}}$$
Integreer termgewijs:
$${\color{red}{\int{\left(1 - \frac{9}{x}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{9}{x} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$- \int{\frac{9}{x} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{9}{x} d x} + {\color{red}{x}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=9$$$ en $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$x - {\color{red}{\int{\frac{9}{x} d x}}} = x - {\color{red}{\left(9 \int{\frac{1}{x} d x}\right)}}$$
De integraal van $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$x - 9 {\color{red}{\int{\frac{1}{x} d x}}} = x - 9 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Dus,
$$\int{\frac{x - 9}{x} d x} = x - 9 \ln{\left(\left|{x}\right| \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{x - 9}{x} d x} = x - 9 \ln{\left(\left|{x}\right| \right)}+C$$
Antwoord
$$$\int \frac{x - 9}{x}\, dx = \left(x - 9 \ln\left(\left|{x}\right|\right)\right) + C$$$A