Integraal van $$$1 - e^{x}$$$ met betrekking tot $$$e$$$

De rekenmachine zal de integraal/primitieve van $$$1 - e^{x}$$$ met betrekking tot $$$e$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(1 - e^{x}\right)\, de$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(1 - e^{x}\right)d e}}} = {\color{red}{\left(\int{1 d e} - \int{e^{x} d e}\right)}}$$

Pas de constantenregel $$$\int c\, de = c e$$$ toe met $$$c=1$$$:

$$- \int{e^{x} d e} + {\color{red}{\int{1 d e}}} = - \int{e^{x} d e} + {\color{red}{e}}$$

Pas de machtsregel $$$\int e^{n}\, de = \frac{e^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=x$$$:

$$e - {\color{red}{\int{e^{x} d e}}}=e - {\color{red}{\frac{e^{x + 1}}{x + 1}}}=e - {\color{red}{\frac{e^{x + 1}}{x + 1}}}$$

Dus,

$$\int{\left(1 - e^{x}\right)d e} = e - \frac{e^{x + 1}}{x + 1}$$

Vereenvoudig:

$$\int{\left(1 - e^{x}\right)d e} = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1}$$

Voeg de integratieconstante toe:

$$\int{\left(1 - e^{x}\right)d e} = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1}+C$$

Antwoord

$$$\int \left(1 - e^{x}\right)\, de = \frac{e \left(x + 1\right) - e^{x + 1}}{x + 1} + C$$$A


Please try a new game Rotatly