Integraal van $$$\frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx$$$.

Oplossing

Zij $$$u=\sin{\left(x \right)}$$$.

Dan $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(x \right)} dx = du$$$.

De integraal kan worden herschreven als

$${\color{red}{\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x}}} = {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}}$$

Zij $$$v=\ln{\left(u \right)}$$$.

Dan $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{du}{u} = dv$$$.

Dus,

$${\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = {\color{red}{\int{\frac{1}{v} d v}}}$$

De integraal van $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{v} d v}}} = {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

We herinneren eraan dat $$$v=\ln{\left(u \right)}$$$:

$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$

We herinneren eraan dat $$$u=\sin{\left(x \right)}$$$:

$$\ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = \ln{\left(\left|{\ln{\left({\color{red}{\sin{\left(x \right)}}} \right)}}\right| \right)}$$

Dus,

$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}$$

Voeg de integratieconstante toe:

$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}+C$$

Antwoord

$$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx = \ln\left(\left|{\ln\left(\sin{\left(x \right)}\right)}\right|\right) + C$$$A


Please try a new game Rotatly