Integraal van $$$\cot^{4}{\left(2 x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \cot^{4}{\left(2 x \right)}\, dx$$$.
Oplossing
Zij $$$u=2 x$$$.
Dan $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{2}$$$.
Dus,
$${\color{red}{\int{\cot^{4}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\cot^{4}{\left(u \right)}}{2} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \cot^{4}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cot^{4}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cot^{4}{\left(u \right)} d u}}{2}\right)}}$$
Zij $$$v=\cot{\left(u \right)}$$$.
Dan $$$dv=\left(\cot{\left(u \right)}\right)^{\prime }du = - \csc^{2}{\left(u \right)} du$$$ (de stappen zijn te zien »), en dan geldt dat $$$\csc^{2}{\left(u \right)} du = - dv$$$.
De integraal wordt
$$\frac{{\color{red}{\int{\cot^{4}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{v^{4}}{v^{2} + 1}\right)d v}}}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=-1$$$ en $$$f{\left(v \right)} = \frac{v^{4}}{v^{2} + 1}$$$:
$$\frac{{\color{red}{\int{\left(- \frac{v^{4}}{v^{2} + 1}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{v^{4}}{v^{2} + 1} d v}\right)}}}{2}$$
Aangezien de graad van de teller niet kleiner is dan die van de noemer, voer een staartdeling van polynomen uit (stappen zijn te zien »):
$$- \frac{{\color{red}{\int{\frac{v^{4}}{v^{2} + 1} d v}}}}{2} = - \frac{{\color{red}{\int{\left(v^{2} - 1 + \frac{1}{v^{2} + 1}\right)d v}}}}{2}$$
Integreer termgewijs:
$$- \frac{{\color{red}{\int{\left(v^{2} - 1 + \frac{1}{v^{2} + 1}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{1 d v} + \int{v^{2} d v} + \int{\frac{1}{v^{2} + 1} d v}\right)}}}{2}$$
Pas de constantenregel $$$\int c\, dv = c v$$$ toe met $$$c=1$$$:
$$- \frac{\int{v^{2} d v}}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{\int{1 d v}}}}{2} = - \frac{\int{v^{2} d v}}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{v}}}{2}$$
Pas de machtsregel $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$$\frac{v}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\int{v^{2} d v}}}}{2}=\frac{v}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{2}=\frac{v}{2} - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{2}$$
De integraal van $$$\frac{1}{v^{2} + 1}$$$ is $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$- \frac{v^{3}}{6} + \frac{v}{2} - \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{2} = - \frac{v^{3}}{6} + \frac{v}{2} - \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{2}$$
We herinneren eraan dat $$$v=\cot{\left(u \right)}$$$:
$$- \frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{2} + \frac{{\color{red}{v}}}{2} - \frac{{\color{red}{v}}^{3}}{6} = - \frac{\operatorname{atan}{\left({\color{red}{\cot{\left(u \right)}}} \right)}}{2} + \frac{{\color{red}{\cot{\left(u \right)}}}}{2} - \frac{{\color{red}{\cot{\left(u \right)}}}^{3}}{6}$$
We herinneren eraan dat $$$u=2 x$$$:
$$\frac{\cot{\left({\color{red}{u}} \right)}}{2} - \frac{\cot^{3}{\left({\color{red}{u}} \right)}}{6} - \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{u}} \right)} \right)}}{2} = \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2} - \frac{\cot^{3}{\left({\color{red}{\left(2 x\right)}} \right)}}{6} - \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{\left(2 x\right)}} \right)} \right)}}{2}$$
Dus,
$$\int{\cot^{4}{\left(2 x \right)} d x} = - \frac{\cot^{3}{\left(2 x \right)}}{6} + \frac{\cot{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}$$
Voeg de integratieconstante toe:
$$\int{\cot^{4}{\left(2 x \right)} d x} = - \frac{\cot^{3}{\left(2 x \right)}}{6} + \frac{\cot{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}+C$$
Antwoord
$$$\int \cot^{4}{\left(2 x \right)}\, dx = \left(- \frac{\cot^{3}{\left(2 x \right)}}{6} + \frac{\cot{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}\right) + C$$$A