Integraal van $$$\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}\, dx$$$.

Oplossing

Herschrijf de integraand:

$${\color{red}{\int{\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\cos^{3}{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x}}}$$

Vermenigvuldig de teller en de noemer met een sinus en schrijf de rest in termen van de cosinus, met behulp van de formule $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ met $$$\alpha=2 x$$$:

$${\color{red}{\int{\frac{\cos^{3}{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos^{3}{\left(2 x \right)}}{1 - \cos^{2}{\left(2 x \right)}} d x}}}$$

Zij $$$u=\cos{\left(2 x \right)}$$$.

Dan $$$du=\left(\cos{\left(2 x \right)}\right)^{\prime }dx = - 2 \sin{\left(2 x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sin{\left(2 x \right)} dx = - \frac{du}{2}$$$.

De integraal wordt

$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos^{3}{\left(2 x \right)}}{1 - \cos^{2}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{u^{3}}{2 \left(1 - u^{2}\right)}\right)d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=- \frac{1}{2}$$$ en $$$f{\left(u \right)} = \frac{u^{3}}{1 - u^{2}}$$$:

$${\color{red}{\int{\left(- \frac{u^{3}}{2 \left(1 - u^{2}\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{u^{3}}{1 - u^{2}} d u}}{2}\right)}}$$

Aangezien de graad van de teller niet kleiner is dan die van de noemer, voer een staartdeling van polynomen uit (stappen zijn te zien »):

$$- \frac{{\color{red}{\int{\frac{u^{3}}{1 - u^{2}} d u}}}}{2} = - \frac{{\color{red}{\int{\left(- u + \frac{u}{1 - u^{2}}\right)d u}}}}{2}$$

Integreer termgewijs:

$$- \frac{{\color{red}{\int{\left(- u + \frac{u}{1 - u^{2}}\right)d u}}}}{2} = - \frac{{\color{red}{\left(- \int{u d u} + \int{\frac{u}{1 - u^{2}} d u}\right)}}}{2}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$- \frac{\int{\frac{u}{1 - u^{2}} d u}}{2} + \frac{{\color{red}{\int{u d u}}}}{2}=- \frac{\int{\frac{u}{1 - u^{2}} d u}}{2} + \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=- \frac{\int{\frac{u}{1 - u^{2}} d u}}{2} + \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$

Zij $$$v=1 - u^{2}$$$.

Dan $$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$ (de stappen zijn te zien »), en dan geldt dat $$$u du = - \frac{dv}{2}$$$.

De integraal kan worden herschreven als

$$\frac{u^{2}}{4} - \frac{{\color{red}{\int{\frac{u}{1 - u^{2}} d u}}}}{2} = \frac{u^{2}}{4} - \frac{{\color{red}{\int{\left(- \frac{1}{2 v}\right)d v}}}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=- \frac{1}{2}$$$ en $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$\frac{u^{2}}{4} - \frac{{\color{red}{\int{\left(- \frac{1}{2 v}\right)d v}}}}{2} = \frac{u^{2}}{4} - \frac{{\color{red}{\left(- \frac{\int{\frac{1}{v} d v}}{2}\right)}}}{2}$$

De integraal van $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{u^{2}}{4} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{4} = \frac{u^{2}}{4} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{4}$$

We herinneren eraan dat $$$v=1 - u^{2}$$$:

$$\frac{u^{2}}{4} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{4} = \frac{u^{2}}{4} + \frac{\ln{\left(\left|{{\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{4}$$

We herinneren eraan dat $$$u=\cos{\left(2 x \right)}$$$:

$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}^{2}}\right| \right)}}{4} + \frac{{\color{red}{u}}^{2}}{4} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(2 x \right)}}}^{2}}\right| \right)}}{4} + \frac{{\color{red}{\cos{\left(2 x \right)}}}^{2}}{4}$$

Dus,

$$\int{\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\cos^{2}{\left(2 x \right)} - 1}\right| \right)}}{4} + \frac{\cos^{2}{\left(2 x \right)}}{4}$$

Voeg de integratieconstante toe:

$$\int{\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\cos^{2}{\left(2 x \right)} - 1}\right| \right)}}{4} + \frac{\cos^{2}{\left(2 x \right)}}{4}+C$$

Antwoord

$$$\int \sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}\, dx = \left(\frac{\ln\left(\left|{\cos^{2}{\left(2 x \right)} - 1}\right|\right)}{4} + \frac{\cos^{2}{\left(2 x \right)}}{4}\right) + C$$$A


Please try a new game Rotatly