Integraal van $$$\frac{\cos{\left(u \right)}}{v}$$$ met betrekking tot $$$u$$$

De rekenmachine zal de integraal/primitieve van $$$\frac{\cos{\left(u \right)}}{v}$$$ met betrekking tot $$$u$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\cos{\left(u \right)}}{v}\, du$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{v}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{v} d u}}} = {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{v}}}$$

De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{v} = \frac{{\color{red}{\sin{\left(u \right)}}}}{v}$$

Dus,

$$\int{\frac{\cos{\left(u \right)}}{v} d u} = \frac{\sin{\left(u \right)}}{v}$$

Voeg de integratieconstante toe:

$$\int{\frac{\cos{\left(u \right)}}{v} d u} = \frac{\sin{\left(u \right)}}{v}+C$$

Antwoord

$$$\int \frac{\cos{\left(u \right)}}{v}\, du = \frac{\sin{\left(u \right)}}{v} + C$$$A


Please try a new game Rotatly