Integraal van $$$\cos{\left(5 x^{2} \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \cos{\left(5 x^{2} \right)}\, dx$$$.
Oplossing
Zij $$$u=\sqrt{5} x$$$.
Dan $$$du=\left(\sqrt{5} x\right)^{\prime }dx = \sqrt{5} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{\sqrt{5} du}{5}$$$.
De integraal wordt
$${\color{red}{\int{\cos{\left(5 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{\sqrt{5}}{5}$$$ en $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$:
$${\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}} = {\color{red}{\left(\frac{\sqrt{5} \int{\cos{\left(u^{2} \right)} d u}}{5}\right)}}$$
Deze integraal (Fresnel-cosinusintegraal) heeft geen gesloten vorm:
$$\frac{\sqrt{5} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{5} = \frac{\sqrt{5} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{5}$$
We herinneren eraan dat $$$u=\sqrt{5} x$$$:
$$\frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{10} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{5} x}}}{\sqrt{\pi}}\right)}{10}$$
Dus,
$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}$$
Voeg de integratieconstante toe:
$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}+C$$
Antwoord
$$$\int \cos{\left(5 x^{2} \right)}\, dx = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10} + C$$$A