Integraal van $$$\frac{4}{y}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{4}{y}\, dy$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ toe met $$$c=4$$$ en $$$f{\left(y \right)} = \frac{1}{y}$$$:
$${\color{red}{\int{\frac{4}{y} d y}}} = {\color{red}{\left(4 \int{\frac{1}{y} d y}\right)}}$$
De integraal van $$$\frac{1}{y}$$$ is $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$:
$$4 {\color{red}{\int{\frac{1}{y} d y}}} = 4 {\color{red}{\ln{\left(\left|{y}\right| \right)}}}$$
Dus,
$$\int{\frac{4}{y} d y} = 4 \ln{\left(\left|{y}\right| \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{4}{y} d y} = 4 \ln{\left(\left|{y}\right| \right)}+C$$
Antwoord
$$$\int \frac{4}{y}\, dy = 4 \ln\left(\left|{y}\right|\right) + C$$$A