Integraal van $$$- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=- \pi^{\pi}$$$ en $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{x}$$$:
$${\color{red}{\int{\left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)d x}}} = {\color{red}{\left(- \pi^{\pi} \int{\frac{\sin{\left(x \right)}}{x} d x}\right)}}$$
Deze integraal (Sinusintegraal) heeft geen gesloten vorm:
$$- \pi^{\pi} {\color{red}{\int{\frac{\sin{\left(x \right)}}{x} d x}}} = - \pi^{\pi} {\color{red}{\operatorname{Si}{\left(x \right)}}}$$
Dus,
$$\int{\left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)d x} = - \pi^{\pi} \operatorname{Si}{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)d x} = - \pi^{\pi} \operatorname{Si}{\left(x \right)}+C$$
Antwoord
$$$\int \left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)\, dx = - \pi^{\pi} \operatorname{Si}{\left(x \right)} + C$$$A