Integraal van $$$9 \sin{\left(3 x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int 9 \sin{\left(3 x \right)}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=9$$$ en $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:
$${\color{red}{\int{9 \sin{\left(3 x \right)} d x}}} = {\color{red}{\left(9 \int{\sin{\left(3 x \right)} d x}\right)}}$$
Zij $$$u=3 x$$$.
Dan $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{3}$$$.
Dus,
$$9 {\color{red}{\int{\sin{\left(3 x \right)} d x}}} = 9 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{3}$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$9 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}} = 9 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}$$
De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
We herinneren eraan dat $$$u=3 x$$$:
$$- 3 \cos{\left({\color{red}{u}} \right)} = - 3 \cos{\left({\color{red}{\left(3 x\right)}} \right)}$$
Dus,
$$\int{9 \sin{\left(3 x \right)} d x} = - 3 \cos{\left(3 x \right)}$$
Voeg de integratieconstante toe:
$$\int{9 \sin{\left(3 x \right)} d x} = - 3 \cos{\left(3 x \right)}+C$$
Antwoord
$$$\int 9 \sin{\left(3 x \right)}\, dx = - 3 \cos{\left(3 x \right)} + C$$$A