Integraal van $$$91 - 24 x^{2}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(91 - 24 x^{2}\right)\, dx$$$.
Oplossing
Integreer termgewijs:
$${\color{red}{\int{\left(91 - 24 x^{2}\right)d x}}} = {\color{red}{\left(\int{91 d x} - \int{24 x^{2} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=91$$$:
$$- \int{24 x^{2} d x} + {\color{red}{\int{91 d x}}} = - \int{24 x^{2} d x} + {\color{red}{\left(91 x\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=24$$$ en $$$f{\left(x \right)} = x^{2}$$$:
$$91 x - {\color{red}{\int{24 x^{2} d x}}} = 91 x - {\color{red}{\left(24 \int{x^{2} d x}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$$91 x - 24 {\color{red}{\int{x^{2} d x}}}=91 x - 24 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=91 x - 24 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Dus,
$$\int{\left(91 - 24 x^{2}\right)d x} = - 8 x^{3} + 91 x$$
Vereenvoudig:
$$\int{\left(91 - 24 x^{2}\right)d x} = x \left(91 - 8 x^{2}\right)$$
Voeg de integratieconstante toe:
$$\int{\left(91 - 24 x^{2}\right)d x} = x \left(91 - 8 x^{2}\right)+C$$
Antwoord
$$$\int \left(91 - 24 x^{2}\right)\, dx = x \left(91 - 8 x^{2}\right) + C$$$A