Integraal van $$$\frac{6}{\left(3 x - 2\right)^{3}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{6}{\left(3 x - 2\right)^{3}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=6$$$ en $$$f{\left(x \right)} = \frac{1}{\left(3 x - 2\right)^{3}}$$$:

$${\color{red}{\int{\frac{6}{\left(3 x - 2\right)^{3}} d x}}} = {\color{red}{\left(6 \int{\frac{1}{\left(3 x - 2\right)^{3}} d x}\right)}}$$

Zij $$$u=3 x - 2$$$.

Dan $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{3}$$$.

Dus,

$$6 {\color{red}{\int{\frac{1}{\left(3 x - 2\right)^{3}} d x}}} = 6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{3}$$$ en $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$:

$$6 {\color{red}{\int{\frac{1}{3 u^{3}} d u}}} = 6 {\color{red}{\left(\frac{\int{\frac{1}{u^{3}} d u}}{3}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-3$$$:

$$2 {\color{red}{\int{\frac{1}{u^{3}} d u}}}=2 {\color{red}{\int{u^{-3} d u}}}=2 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=2 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=2 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

We herinneren eraan dat $$$u=3 x - 2$$$:

$$- {\color{red}{u}}^{-2} = - {\color{red}{\left(3 x - 2\right)}}^{-2}$$

Dus,

$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}$$

Voeg de integratieconstante toe:

$$\int{\frac{6}{\left(3 x - 2\right)^{3}} d x} = - \frac{1}{\left(3 x - 2\right)^{2}}+C$$

Antwoord

$$$\int \frac{6}{\left(3 x - 2\right)^{3}}\, dx = - \frac{1}{\left(3 x - 2\right)^{2}} + C$$$A


Please try a new game Rotatly