Integraal van $$$- 31 x^{2} + 124 x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(- 31 x^{2} + 124 x\right)\, dx$$$.
Oplossing
Integreer termgewijs:
$${\color{red}{\int{\left(- 31 x^{2} + 124 x\right)d x}}} = {\color{red}{\left(\int{124 x d x} - \int{31 x^{2} d x}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=31$$$ en $$$f{\left(x \right)} = x^{2}$$$:
$$\int{124 x d x} - {\color{red}{\int{31 x^{2} d x}}} = \int{124 x d x} - {\color{red}{\left(31 \int{x^{2} d x}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$$\int{124 x d x} - 31 {\color{red}{\int{x^{2} d x}}}=\int{124 x d x} - 31 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{124 x d x} - 31 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=124$$$ en $$$f{\left(x \right)} = x$$$:
$$- \frac{31 x^{3}}{3} + {\color{red}{\int{124 x d x}}} = - \frac{31 x^{3}}{3} + {\color{red}{\left(124 \int{x d x}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:
$$- \frac{31 x^{3}}{3} + 124 {\color{red}{\int{x d x}}}=- \frac{31 x^{3}}{3} + 124 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \frac{31 x^{3}}{3} + 124 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Dus,
$$\int{\left(- 31 x^{2} + 124 x\right)d x} = - \frac{31 x^{3}}{3} + 62 x^{2}$$
Vereenvoudig:
$$\int{\left(- 31 x^{2} + 124 x\right)d x} = \frac{31 x^{2} \left(6 - x\right)}{3}$$
Voeg de integratieconstante toe:
$$\int{\left(- 31 x^{2} + 124 x\right)d x} = \frac{31 x^{2} \left(6 - x\right)}{3}+C$$
Antwoord
$$$\int \left(- 31 x^{2} + 124 x\right)\, dx = \frac{31 x^{2} \left(6 - x\right)}{3} + C$$$A