Integraal van $$$24 t^{3} - 18 t - 6$$$

De calculator zal de integraal/primitieve functie van $$$24 t^{3} - 18 t - 6$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(24 t^{3} - 18 t - 6\right)\, dt$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(24 t^{3} - 18 t - 6\right)d t}}} = {\color{red}{\left(- \int{6 d t} - \int{18 t d t} + \int{24 t^{3} d t}\right)}}$$

Pas de constantenregel $$$\int c\, dt = c t$$$ toe met $$$c=6$$$:

$$- \int{18 t d t} + \int{24 t^{3} d t} - {\color{red}{\int{6 d t}}} = - \int{18 t d t} + \int{24 t^{3} d t} - {\color{red}{\left(6 t\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=18$$$ en $$$f{\left(t \right)} = t$$$:

$$- 6 t + \int{24 t^{3} d t} - {\color{red}{\int{18 t d t}}} = - 6 t + \int{24 t^{3} d t} - {\color{red}{\left(18 \int{t d t}\right)}}$$

Pas de machtsregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$- 6 t + \int{24 t^{3} d t} - 18 {\color{red}{\int{t d t}}}=- 6 t + \int{24 t^{3} d t} - 18 {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=- 6 t + \int{24 t^{3} d t} - 18 {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=24$$$ en $$$f{\left(t \right)} = t^{3}$$$:

$$- 9 t^{2} - 6 t + {\color{red}{\int{24 t^{3} d t}}} = - 9 t^{2} - 6 t + {\color{red}{\left(24 \int{t^{3} d t}\right)}}$$

Pas de machtsregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=3$$$:

$$- 9 t^{2} - 6 t + 24 {\color{red}{\int{t^{3} d t}}}=- 9 t^{2} - 6 t + 24 {\color{red}{\frac{t^{1 + 3}}{1 + 3}}}=- 9 t^{2} - 6 t + 24 {\color{red}{\left(\frac{t^{4}}{4}\right)}}$$

Dus,

$$\int{\left(24 t^{3} - 18 t - 6\right)d t} = 6 t^{4} - 9 t^{2} - 6 t$$

Vereenvoudig:

$$\int{\left(24 t^{3} - 18 t - 6\right)d t} = 3 t \left(2 t^{3} - 3 t - 2\right)$$

Voeg de integratieconstante toe:

$$\int{\left(24 t^{3} - 18 t - 6\right)d t} = 3 t \left(2 t^{3} - 3 t - 2\right)+C$$

Antwoord

$$$\int \left(24 t^{3} - 18 t - 6\right)\, dt = 3 t \left(2 t^{3} - 3 t - 2\right) + C$$$A


Please try a new game Rotatly