Integraal van $$$\frac{3}{3 x - 1}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{3}{3 x - 1}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=3$$$ en $$$f{\left(x \right)} = \frac{1}{3 x - 1}$$$:
$${\color{red}{\int{\frac{3}{3 x - 1} d x}}} = {\color{red}{\left(3 \int{\frac{1}{3 x - 1} d x}\right)}}$$
Zij $$$u=3 x - 1$$$.
Dan $$$du=\left(3 x - 1\right)^{\prime }dx = 3 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{3}$$$.
Dus,
$$3 {\color{red}{\int{\frac{1}{3 x - 1} d x}}} = 3 {\color{red}{\int{\frac{1}{3 u} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{3}$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$3 {\color{red}{\int{\frac{1}{3 u} d u}}} = 3 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
We herinneren eraan dat $$$u=3 x - 1$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(3 x - 1\right)}}}\right| \right)}$$
Dus,
$$\int{\frac{3}{3 x - 1} d x} = \ln{\left(\left|{3 x - 1}\right| \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{3}{3 x - 1} d x} = \ln{\left(\left|{3 x - 1}\right| \right)}+C$$
Antwoord
$$$\int \frac{3}{3 x - 1}\, dx = \ln\left(\left|{3 x - 1}\right|\right) + C$$$A