Integraal van $$$25 \cos{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int 25 \cos{\left(x \right)}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=25$$$ en $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{25 \cos{\left(x \right)} d x}}} = {\color{red}{\left(25 \int{\cos{\left(x \right)} d x}\right)}}$$
De integraal van de cosinus is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$25 {\color{red}{\int{\cos{\left(x \right)} d x}}} = 25 {\color{red}{\sin{\left(x \right)}}}$$
Dus,
$$\int{25 \cos{\left(x \right)} d x} = 25 \sin{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{25 \cos{\left(x \right)} d x} = 25 \sin{\left(x \right)}+C$$
Antwoord
$$$\int 25 \cos{\left(x \right)}\, dx = 25 \sin{\left(x \right)} + C$$$A