Integraal van $$$\frac{25}{x^{2}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{25}{x^{2}}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=25$$$ en $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\frac{25}{x^{2}} d x}}} = {\color{red}{\left(25 \int{\frac{1}{x^{2}} d x}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-2$$$:
$$25 {\color{red}{\int{\frac{1}{x^{2}} d x}}}=25 {\color{red}{\int{x^{-2} d x}}}=25 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=25 {\color{red}{\left(- x^{-1}\right)}}=25 {\color{red}{\left(- \frac{1}{x}\right)}}$$
Dus,
$$\int{\frac{25}{x^{2}} d x} = - \frac{25}{x}$$
Voeg de integratieconstante toe:
$$\int{\frac{25}{x^{2}} d x} = - \frac{25}{x}+C$$
Antwoord
$$$\int \frac{25}{x^{2}}\, dx = - \frac{25}{x} + C$$$A