Integraal van $$$- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2$$$

De calculator zal de integraal/primitieve functie van $$$- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)d x}}} = {\color{red}{\left(\int{2 d x} - \int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=2$$$:

$$- \int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x} + {\color{red}{\int{2 d x}}} = - \int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x} + {\color{red}{\left(2 x\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{3 \sqrt{13}}{13}$$$ en $$$f{\left(x \right)} = \sqrt{x}$$$:

$$2 x - {\color{red}{\int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x}}} = 2 x - {\color{red}{\left(\frac{3 \sqrt{13} \int{\sqrt{x} d x}}{13}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=\frac{1}{2}$$$:

$$2 x - \frac{3 \sqrt{13} {\color{red}{\int{\sqrt{x} d x}}}}{13}=2 x - \frac{3 \sqrt{13} {\color{red}{\int{x^{\frac{1}{2}} d x}}}}{13}=2 x - \frac{3 \sqrt{13} {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{13}=2 x - \frac{3 \sqrt{13} {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}}{13}$$

Dus,

$$\int{\left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)d x} = - \frac{2 \sqrt{13} x^{\frac{3}{2}}}{13} + 2 x$$

Voeg de integratieconstante toe:

$$\int{\left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)d x} = - \frac{2 \sqrt{13} x^{\frac{3}{2}}}{13} + 2 x+C$$

Antwoord

$$$\int \left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)\, dx = \left(- \frac{2 \sqrt{13} x^{\frac{3}{2}}}{13} + 2 x\right) + C$$$A


Please try a new game Rotatly