Integraal van $$$1 - \cos{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(1 - \cos{\left(x \right)}\right)\, dx$$$.
Oplossing
Integreer termgewijs:
$${\color{red}{\int{\left(1 - \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\cos{\left(x \right)} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$- \int{\cos{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\cos{\left(x \right)} d x} + {\color{red}{x}}$$
De integraal van de cosinus is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$x - {\color{red}{\int{\cos{\left(x \right)} d x}}} = x - {\color{red}{\sin{\left(x \right)}}}$$
Dus,
$$\int{\left(1 - \cos{\left(x \right)}\right)d x} = x - \sin{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\left(1 - \cos{\left(x \right)}\right)d x} = x - \sin{\left(x \right)}+C$$
Antwoord
$$$\int \left(1 - \cos{\left(x \right)}\right)\, dx = \left(x - \sin{\left(x \right)}\right) + C$$$A