Integraal van $$$\frac{\sqrt{x - 1}}{x}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{\sqrt{x - 1}}{x}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\sqrt{x - 1}}{x}\, dx$$$.

Oplossing

Zij $$$u=\sqrt{x - 1}$$$.

Dan $$$du=\left(\sqrt{x - 1}\right)^{\prime }dx = \frac{1}{2 \sqrt{x - 1}} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{dx}{\sqrt{x - 1}} = 2 du$$$.

De integraal wordt

$${\color{red}{\int{\frac{\sqrt{x - 1}}{x} d x}}} = {\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$${\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\left(2 \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Herschrijf en splits de breuk:

$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integreer termgewijs:

$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$

De integraal van $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

We herinneren eraan dat $$$u=\sqrt{x - 1}$$$:

$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\sqrt{x - 1}}} \right)} + 2 {\color{red}{\sqrt{x - 1}}}$$

Dus,

$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}$$

Voeg de integratieconstante toe:

$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}+C$$

Antwoord

$$$\int \frac{\sqrt{x - 1}}{x}\, dx = \left(2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}\right) + C$$$A


Please try a new game Rotatly