Integraal van $$$\frac{1}{\sqrt{y \left(y - 1\right)}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{\sqrt{y \left(y - 1\right)}}\, dy$$$.
Oplossing
De invoer is herschreven: $$$\int{\frac{1}{\sqrt{y \left(y - 1\right)}} d y}=\int{\frac{1}{\sqrt{y^{2} - y}} d y}$$$.
Voltooi het kwadraat (stappen zijn te zien »): $$$y^{2} - y = \left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{y^{2} - y}} d y}}} = {\color{red}{\int{\frac{1}{\sqrt{\left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}}} d y}}}$$
Zij $$$u=y - \frac{1}{2}$$$.
Dan $$$du=\left(y - \frac{1}{2}\right)^{\prime }dy = 1 dy$$$ (de stappen zijn te zien »), en dan geldt dat $$$dy = du$$$.
De integraal wordt
$${\color{red}{\int{\frac{1}{\sqrt{\left(y - \frac{1}{2}\right)^{2} - \frac{1}{4}}} d y}}} = {\color{red}{\int{\frac{1}{\sqrt{u^{2} - \frac{1}{4}}} d u}}}$$
Zij $$$u=\frac{\cosh{\left(v \right)}}{2}$$$.
Dan $$$du=\left(\frac{\cosh{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sinh{\left(v \right)}}{2} dv$$$ (zie » voor de stappen).
Bovendien volgt dat $$$v=\operatorname{acosh}{\left(2 u \right)}$$$.
Dus,
$$$\frac{1}{\sqrt{ u ^{2} - \frac{1}{4}}} = \frac{1}{\sqrt{\frac{\cosh^{2}{\left( v \right)}}{4} - \frac{1}{4}}}$$$
Gebruik de identiteit $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:
$$$\frac{1}{\sqrt{\frac{\cosh^{2}{\left( v \right)}}{4} - \frac{1}{4}}}=\frac{2}{\sqrt{\cosh^{2}{\left( v \right)} - 1}}=\frac{2}{\sqrt{\sinh^{2}{\left( v \right)}}}$$$
Aangenomen dat $$$\sinh{\left( v \right)} \ge 0$$$, verkrijgen we het volgende:
$$$\frac{2}{\sqrt{\sinh^{2}{\left( v \right)}}} = \frac{2}{\sinh{\left( v \right)}}$$$
Dus,
$${\color{red}{\int{\frac{1}{\sqrt{u^{2} - \frac{1}{4}}} d u}}} = {\color{red}{\int{1 d v}}}$$
Pas de constantenregel $$$\int c\, dv = c v$$$ toe met $$$c=1$$$:
$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$
We herinneren eraan dat $$$v=\operatorname{acosh}{\left(2 u \right)}$$$:
$${\color{red}{v}} = {\color{red}{\operatorname{acosh}{\left(2 u \right)}}}$$
We herinneren eraan dat $$$u=y - \frac{1}{2}$$$:
$$\operatorname{acosh}{\left(2 {\color{red}{u}} \right)} = \operatorname{acosh}{\left(2 {\color{red}{\left(y - \frac{1}{2}\right)}} \right)}$$
Dus,
$$\int{\frac{1}{\sqrt{y^{2} - y}} d y} = \operatorname{acosh}{\left(2 y - 1 \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{\sqrt{y^{2} - y}} d y} = \operatorname{acosh}{\left(2 y - 1 \right)}+C$$
Antwoord
$$$\int \frac{1}{\sqrt{y \left(y - 1\right)}}\, dy = \operatorname{acosh}{\left(2 y - 1 \right)} + C$$$A