Integraal van $$$1 - z^{3}$$$

De calculator zal de integraal/primitieve functie van $$$1 - z^{3}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(1 - z^{3}\right)\, dz$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(1 - z^{3}\right)d z}}} = {\color{red}{\left(\int{1 d z} - \int{z^{3} d z}\right)}}$$

Pas de constantenregel $$$\int c\, dz = c z$$$ toe met $$$c=1$$$:

$$- \int{z^{3} d z} + {\color{red}{\int{1 d z}}} = - \int{z^{3} d z} + {\color{red}{z}}$$

Pas de machtsregel $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=3$$$:

$$z - {\color{red}{\int{z^{3} d z}}}=z - {\color{red}{\frac{z^{1 + 3}}{1 + 3}}}=z - {\color{red}{\left(\frac{z^{4}}{4}\right)}}$$

Dus,

$$\int{\left(1 - z^{3}\right)d z} = - \frac{z^{4}}{4} + z$$

Voeg de integratieconstante toe:

$$\int{\left(1 - z^{3}\right)d z} = - \frac{z^{4}}{4} + z+C$$

Antwoord

$$$\int \left(1 - z^{3}\right)\, dz = \left(- \frac{z^{4}}{4} + z\right) + C$$$A


Please try a new game Rotatly