Integraal van $$$-1 + \frac{1}{\cos{\left(x \right)}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(-1 + \frac{1}{\cos{\left(x \right)}}\right)\, dx$$$.
Oplossing
Integreer termgewijs:
$${\color{red}{\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\cos{\left(x \right)}} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$\int{\frac{1}{\cos{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\cos{\left(x \right)}} d x} - {\color{red}{x}}$$
Herschrijf de cosinus in termen van de sinus met behulp van de formule $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ en herschrijf vervolgens de sinus met behulp van de dubbelhoekformule $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$$- x + {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$
Vermenigvuldig de teller en de noemer met $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:
$$- x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = - x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$
Zij $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$.
Dan $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$.
De integraal kan worden herschreven als
$$- x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{u} d u}}}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x + {\color{red}{\int{\frac{1}{u} d u}}} = - x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
We herinneren eraan dat $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:
$$- x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x + \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$
Dus,
$$\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}$$
Voeg de integratieconstante toe:
$$\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}+C$$
Antwoord
$$$\int \left(-1 + \frac{1}{\cos{\left(x \right)}}\right)\, dx = \left(- x + \ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)\right) + C$$$A