Integraal van $$$\frac{x}{4}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{x}{4}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{x}{4}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{\frac{x}{4} d x}}} = {\color{red}{\left(\frac{\int{x d x}}{4}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$\frac{{\color{red}{\int{x d x}}}}{4}=\frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{4}=\frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{4}$$

Dus,

$$\int{\frac{x}{4} d x} = \frac{x^{2}}{8}$$

Voeg de integratieconstante toe:

$$\int{\frac{x}{4} d x} = \frac{x^{2}}{8}+C$$

Antwoord

$$$\int \frac{x}{4}\, dx = \frac{x^{2}}{8} + C$$$A


Please try a new game Rotatly