Integraal van $$$\frac{3}{y^{2}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{3}{y^{2}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{3}{y^{2}}\, dy$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ toe met $$$c=3$$$ en $$$f{\left(y \right)} = \frac{1}{y^{2}}$$$:

$${\color{red}{\int{\frac{3}{y^{2}} d y}}} = {\color{red}{\left(3 \int{\frac{1}{y^{2}} d y}\right)}}$$

Pas de machtsregel $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-2$$$:

$$3 {\color{red}{\int{\frac{1}{y^{2}} d y}}}=3 {\color{red}{\int{y^{-2} d y}}}=3 {\color{red}{\frac{y^{-2 + 1}}{-2 + 1}}}=3 {\color{red}{\left(- y^{-1}\right)}}=3 {\color{red}{\left(- \frac{1}{y}\right)}}$$

Dus,

$$\int{\frac{3}{y^{2}} d y} = - \frac{3}{y}$$

Voeg de integratieconstante toe:

$$\int{\frac{3}{y^{2}} d y} = - \frac{3}{y}+C$$

Antwoord

$$$\int \frac{3}{y^{2}}\, dy = - \frac{3}{y} + C$$$A


Please try a new game Rotatly