Integraal van $$$\sqrt{2} \left(\cot^{2}{\left(x \right)} - 1\right)$$$

De calculator zal de integraal/primitieve functie van $$$\sqrt{2} \left(\cot^{2}{\left(x \right)} - 1\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sqrt{2} \left(\cot^{2}{\left(x \right)} - 1\right)\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\sqrt{2}$$$ en $$$f{\left(x \right)} = \cot^{2}{\left(x \right)} - 1$$$:

$${\color{red}{\int{\sqrt{2} \left(\cot^{2}{\left(x \right)} - 1\right) d x}}} = {\color{red}{\sqrt{2} \int{\left(\cot^{2}{\left(x \right)} - 1\right)d x}}}$$

Integreer termgewijs:

$$\sqrt{2} {\color{red}{\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x}}} = \sqrt{2} {\color{red}{\left(- \int{1 d x} + \int{\cot^{2}{\left(x \right)} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:

$$\sqrt{2} \left(\int{\cot^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}}\right) = \sqrt{2} \left(\int{\cot^{2}{\left(x \right)} d x} - {\color{red}{x}}\right)$$

Zij $$$u=\cot{\left(x \right)}$$$.

Dan $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\csc^{2}{\left(x \right)} dx = - du$$$.

De integraal kan worden herschreven als

$$\sqrt{2} \left(- x + {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}\right) = \sqrt{2} \left(- x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}\right)$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$$\sqrt{2} \left(- x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}\right) = \sqrt{2} \left(- x + {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}\right)$$

Herschrijf en splits de breuk:

$$\sqrt{2} \left(- x - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}\right) = \sqrt{2} \left(- x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}\right)$$

Integreer termgewijs:

$$\sqrt{2} \left(- x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}\right) = \sqrt{2} \left(- x - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}\right)$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$\sqrt{2} \left(- x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}}\right) = \sqrt{2} \left(- x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}\right)$$

De integraal van $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\sqrt{2} \left(- u - x + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right) = \sqrt{2} \left(- u - x + {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)$$

We herinneren eraan dat $$$u=\cot{\left(x \right)}$$$:

$$\sqrt{2} \left(- x + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}}\right) = \sqrt{2} \left(- x + \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}\right)$$

Dus,

$$\int{\sqrt{2} \left(\cot^{2}{\left(x \right)} - 1\right) d x} = \sqrt{2} \left(- x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right)$$

Voeg de integratieconstante toe:

$$\int{\sqrt{2} \left(\cot^{2}{\left(x \right)} - 1\right) d x} = \sqrt{2} \left(- x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right)+C$$

Antwoord

$$$\int \sqrt{2} \left(\cot^{2}{\left(x \right)} - 1\right)\, dx = \sqrt{2} \left(- x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A


Please try a new game Rotatly