Integraal van $$$\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right)$$$

De calculator zal de integraal/primitieve functie van $$$\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sqrt{2} \left(1 - \sin{\left(2 x \right)}\right)\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\sqrt{2}$$$ en $$$f{\left(x \right)} = 1 - \sin{\left(2 x \right)}$$$:

$${\color{red}{\int{\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right) d x}}} = {\color{red}{\sqrt{2} \int{\left(1 - \sin{\left(2 x \right)}\right)d x}}}$$

Integreer termgewijs:

$$\sqrt{2} {\color{red}{\int{\left(1 - \sin{\left(2 x \right)}\right)d x}}} = \sqrt{2} {\color{red}{\left(\int{1 d x} - \int{\sin{\left(2 x \right)} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:

$$\sqrt{2} \left(- \int{\sin{\left(2 x \right)} d x} + {\color{red}{\int{1 d x}}}\right) = \sqrt{2} \left(- \int{\sin{\left(2 x \right)} d x} + {\color{red}{x}}\right)$$

Zij $$$u=2 x$$$.

Dan $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{2}$$$.

Dus,

$$\sqrt{2} \left(x - {\color{red}{\int{\sin{\left(2 x \right)} d x}}}\right) = \sqrt{2} \left(x - {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}\right)$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\sqrt{2} \left(x - {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}\right) = \sqrt{2} \left(x - {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}\right)$$

De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\sqrt{2} \left(x - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2}\right) = \sqrt{2} \left(x - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}\right)$$

We herinneren eraan dat $$$u=2 x$$$:

$$\sqrt{2} \left(x + \frac{\cos{\left({\color{red}{u}} \right)}}{2}\right) = \sqrt{2} \left(x + \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}\right)$$

Dus,

$$\int{\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right) d x} = \sqrt{2} \left(x + \frac{\cos{\left(2 x \right)}}{2}\right)$$

Voeg de integratieconstante toe:

$$\int{\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right) d x} = \sqrt{2} \left(x + \frac{\cos{\left(2 x \right)}}{2}\right)+C$$

Antwoord

$$$\int \sqrt{2} \left(1 - \sin{\left(2 x \right)}\right)\, dx = \sqrt{2} \left(x + \frac{\cos{\left(2 x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly